logo
【布客】PyTorch 中文翻译
Speech Recognition with Wav2Vec2
Initializing search
    apachecn/pytorch-doc-zh
    apachecn/pytorch-doc-zh
    • PyTorch 中文文档 & 教程
      • V2.6
      • V2.5
      • V2.4
      • V2.3
      • V2.2
      • V2.1
      • V2.0
      • V1.13
      • V1.12
      • V1.11
      • V1.10
      • V1.9
      • V1.8
      • V1.7
      • V1.6
      • V1.5
      • V1.4
      • V1.3
      • V1.2
          • See All Recipes
          • See All Prototype Recipes
          • Learn the Basics
          • Quickstart
          • Tensors
          • Datasets & DataLoaders
          • Transforms
          • Build the Neural Network
          • Automatic Differentiation with torch.autograd
          • Optimizing Model Parameters
          • Save and Load the Model
          • Introduction to PyTorch - YouTube Series
          • Introduction to PyTorch
          • Introduction to PyTorch Tensors
          • The Fundamentals of Autograd
          • Building Models with PyTorch
          • PyTorch TensorBoard Support
          • Training with PyTorch
          • Model Understanding with Captum
          • Deep Learning with PyTorch: A 60 Minute Blitz
          • Learning PyTorch with Examples
          • What is torch.nn really?
          • Visualizing Models, Data, and Training with TensorBoard
          • TorchVision Object Detection Finetuning Tutorial
          • Transfer Learning for Computer Vision Tutorial
          • Adversarial Example Generation
          • DCGAN Tutorial
          • Spatial Transformer Networks Tutorial
          • Optimizing Vision Transformer Model for Deployment
          • Whole Slide Image Classification Using PyTorch and TIAToolbox
          • Audio I/O
          • Audio Resampling
          • Audio Data Augmentation
          • Audio Feature Extractions
          • Audio Feature Augmentation
          • Audio Datasets
          • Speech Recognition with Wav2Vec2
          • Text-to-speech with Tacotron2
          • Forced Alignment with Wav2Vec2
          • Fast Transformer Inference with Better Transformer
          • NLP From Scratch: Classifying Names with a Character-Level RNN
          • NLP From Scratch: Generating Names with a Character-Level RNN
          • NLP From Scratch: Translation with a Sequence to Sequence Network and Attention
          • Text classification with the torchtext library
          • Language Translation with nn.Transformer and torchtext
          • Preprocess custom text dataset using Torchtext
          • Introduction to ONNX
          • Reinforcement Learning (DQN) Tutorial
          • Reinforcement Learning (PPO) with TorchRL Tutorial
          • Train a Mario-playing RL Agent
          • Pendulum: Writing your environment and transforms with TorchRL
          • Introduction to ONNX
          • Deploying PyTorch in Python via a REST API with Flask
          • Introduction to TorchScript
          • Loading a TorchScript Model in C++
          • (optional) Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime
          • Real Time Inference on Raspberry Pi 4 (30 fps!)
          • Profiling your PyTorch Module
          • Introduction to Holistic Trace Analysis
          • Trace Diff using Holistic Trace Analysis
          • (beta) Building a Convolution/Batch Norm fuser in FX
          • (beta) Building a Simple CPU Performance Profiler with FX
          • (beta) Channels Last Memory Format in PyTorch
          • Forward-mode Automatic Differentiation (Beta)
          • Jacobians, Hessians, hvp, vhp, and more: composing function transforms
          • Model ensembling
          • Per-sample-gradients
          • Using the PyTorch C++ Frontend
          • Dynamic Parallelism in TorchScript
          • Autograd in C++ Frontend
          • Double Backward with Custom Functions
          • Fusing Convolution and Batch Norm using Custom Function
          • Custom C++ and CUDA Extensions
          • Extending TorchScript with Custom C++ Operators
          • Extending TorchScript with Custom C++ Classes
          • Registering a Dispatched Operator in C++
          • Extending dispatcher for a new backend in C++
          • Facilitating New Backend Integration by PrivateUse1
          • Profiling your PyTorch Module
          • PyTorch Profiler With TensorBoard
          • Hyperparameter tuning with Ray Tune
          • Optimizing Vision Transformer Model for Deployment
          • Parametrizations Tutorial
          • Pruning Tutorial
          • (beta) Dynamic Quantization on an LSTM Word Language Model
          • (beta) Dynamic Quantization on BERT
          • (beta) Quantized Transfer Learning for Computer Vision Tutorial
          • (beta) Static Quantization with Eager Mode in PyTorch
          • Grokking PyTorch Intel CPU performance from first principles
          • Grokking PyTorch Intel CPU performance from first principles (Part 2)
          • Getting Started - Accelerate Your Scripts with nvFuser
          • Multi-Objective NAS with Ax
          • Introduction to torch.compile
          • Inductor CPU backend debugging and profiling
          • (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)
          • (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)
          • (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)
          • (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)
          • Knowledge Distillation Tutorial
          • Distributed and Parallel Training Tutorials
          • PyTorch Distributed Overview
          • Distributed Data Parallel in PyTorch - Video Tutorials
          • Single-Machine Model Parallel Best Practices
          • Getting Started with Distributed Data Parallel
          • Writing Distributed Applications with PyTorch
          • Getting Started with Fully Sharded Data Parallel(FSDP)
          • Advanced Model Training with Fully Sharded Data Parallel (FSDP)
          • Large Scale Transformer model training with Tensor Parallel (TP)
          • Customize Process Group Backends Using Cpp Extensions
          • Getting Started with Distributed RPC Framework
          • Implementing a Parameter Server Using Distributed RPC Framework
          • Distributed Pipeline Parallelism Using RPC
          • Implementing Batch RPC Processing Using Asynchronous Executions
          • Combining Distributed DataParallel with Distributed RPC Framework
          • Training Transformer models using Distributed Data Parallel and Pipeline Parallelism
          • Distributed Training with Uneven Inputs Using the Join Context Manager
          • Exporting to ExecuTorch Tutorial
          • Running an ExecuTorch Model in C++ Tutorial
          • Using the ExecuTorch SDK to Profile a Model
          • Building an ExecuTorch iOS Demo App
          • Building an ExecuTorch Android Demo App
          • Lowering a Model as a Delegate
          • Introduction to TorchRec
          • Exploring TorchRec sharding
          • TorchMultimodal Tutorial: Finetuning FLAVA
        • 介绍
        • Pytorch
        • Torchaudio
        • TorchText
        • TorchVision
        • TorchArrow
        • TorchRec
        • TorchServe
        • TorchX
        • PyTorch on XLA Devices
    • PyTorch 1.7 中文文档
    • PyTorch 1.4 中文文档 & 教程
    • PyTorch 1.0 中文文档 & 教程
    • PyTorch 0.4 中文文档
    • PyTorch 0.3 中文文档 & 教程
    • PyTorch 0.2 中文文档
    • 贡献指南
    • 关于我们
    • 加入我们
    • 中文资源合集

    Speech Recognition with Wav2Vec2

    Speech Recognition with Wav2Vec2 ¶ ======================================================================================================

    This tutorial has been moved to https://pytorch.org/audio/stable/tutorials/speech_recognition_pipeline_tutorial.html

    It will redirect in 3 seconds.

    Previous
    Audio Datasets
    Next
    Text-to-speech with Tacotron2
    Made with Material for MkDocs